Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
PLoS One ; 16(10): e0258229, 2021.
Article in English | MEDLINE | ID: covidwho-1450734

ABSTRACT

BACKGROUND/AIMS: We measured the association between underlying chronic hepatitis B (CHB) and antiviral use with infection rates among patients who underwent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing. METHODS: In total, 204,418 patients who were tested for SARS-CoV-2 between January and June 2020 were included. For each case patient (n = 7,723) with a positive SARS-CoV-2 test, random controls (n = 46,231) were selected from the target population who had been exposed to someone with coronavirus disease 2019 (COVID-19) but had a negative SARS-CoV-2 test result. We merged claim-based data from the Korean National Health Insurance Service database collected. Primary endpoints were SARS-CoV-2 infection and severe clinical outcomes of COVID-19. RESULTS: The proportion of underlying CHB was lower in COVID-19 positive patients (n = 267, 3.5%) than in COVID-19 negative controls (n = 2482, 5.4%). Underlying CHB was associated with a lower SARS-CoV-2 positivity rate, after adjusting for comorbidities (adjusted odds ratio [aOR] 0.65; 95% confidence interval [CI], 0.57-0.74). Among patients with confirmed COVID-19, underlying CHB tended to confer a 66% greater risk of severe clinical outcomes of COVID-19, although this value was statistically insignificant. Antiviral treatment including tenofovir and entecavir was associated with a reduced SARS-CoV-2 positivity rate (aOR 0.49; 95% CI, 0.37-0.66), while treatment was not associated with severe clinical outcomes of COVID-19. CONCLUSIONS: Underlying CHB and antiviral agents including tenofovir decreased susceptibility to SARS-CoV-2 infection. HBV coinfection did not increase the risk of disease severity or lead to a worse prognosis in COVID-19.


Subject(s)
COVID-19/pathology , Hepatitis B, Chronic/pathology , Adult , Aged , Aged, 80 and over , Antiviral Agents/therapeutic use , COVID-19/complications , COVID-19/epidemiology , COVID-19/virology , Case-Control Studies , Cohort Studies , Databases, Factual , Female , Guanine/analogs & derivatives , Guanine/therapeutic use , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/epidemiology , Humans , Male , Middle Aged , Odds Ratio , Republic of Korea/epidemiology , Risk , Severity of Illness Index , Tenofovir/therapeutic use , Young Adult
2.
Dig Dis Sci ; 66(11): 4026-4034, 2021 11.
Article in English | MEDLINE | ID: covidwho-1002116

ABSTRACT

BACKGROUND AND AIM: To investigate the risk of hepatitis B virus reactivation in patients undergoing long-term tocilizumab therapy for rheumatoid arthritis. METHOD: From January 2011 through August 2019, a total of 97 patients were enrolled in this retrospective study. Clinical data, comedications, and the occurrence of HBV reactivation were recorded. RESULTS: Seven patients were HBsAg+ (7.2%), 64 were HBsAg-/HBcAb+ (65.9%), and 26 were HBsAg-/HBcAb- (26.8%). The median disease follow-up time was 9 years. TCZ was administered for a median of 29 months. Four patients (4.1%) experienced HBV reactivation after tocilizumab therapy. Of the 7 HBsAg+ patients, 4 received antiviral prophylaxis and had no HBV reactivation; the remaining 3 patients did not receive antiviral prophylaxis, and all 3 (100%) experienced HBV reactivation and hepatitis flare-up. Hyperbilirubinemia occurred in 2 of these 3 patients, with mild prothrombin time prolongation in one. After salvage entecavir treatment, all patients had a favorable outcome. Of the 64 HBsAg-/HBcAb+ patients, only one became positive for serum HBV DNA (2.5 × 107 IU/mL) after 18 months of tocilizumab treatment (1.6%; 1/64). This patient was immediately treated with entecavir, which prevented hepatitis flare-up. CONCLUSIONS: Tocilizumab is widely used in treating rheumatoid arthritis and has the potential to reduce the mortality rate among severe COVID-19 patients. However, HBV reactivation needs to be considered. HBsAg+ patients have a high risk of HBV reactivation, which could be prevented by antiviral prophylaxis. Although the risk of reactivation is low in HBsAg-/HBcAb+ patients, strict monitoring is necessary.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Hepatitis B, Chronic/drug therapy , Virus Activation/drug effects , Antibodies, Monoclonal, Humanized/adverse effects , Antirheumatic Agents/adverse effects , Antiviral Agents/therapeutic use , Guanine/analogs & derivatives , Guanine/therapeutic use , Hepatitis B Antibodies/blood , Hepatitis B Surface Antigens/blood , Hepatitis B virus/physiology , Humans , Retrospective Studies , Risk Factors , Virus Latency/drug effects
3.
EMBO Mol Med ; 13(1): e13105, 2021 01 11.
Article in English | MEDLINE | ID: covidwho-814824

ABSTRACT

The ongoing SARS-CoV-2 pandemic stresses the need for effective antiviral drugs that can quickly be applied in order to reduce morbidity, mortality, and ideally viral transmission. By repurposing of broadly active antiviral drugs and compounds that are known to inhibit viral replication of related viruses, several advances could be made in the development of treatment strategies against COVID-19. The nucleoside analog remdesivir, which is known for its potent in vitro activity against Ebolavirus and other RNA viruses, was recently shown to reduce the time to recovery in patients with severe COVID-19. It is to date the only approved antiviral for treating COVID-19. Here, we provide a mechanism and evidence-based comparative review of remdesivir and other repurposed drugs with proven in vitro activity against SARS-CoV-2.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Drug Repositioning , SARS-CoV-2/drug effects , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Alanine/pharmacology , Alanine/therapeutic use , Amides/pharmacology , Amides/therapeutic use , Antiviral Agents/pharmacology , Benzamidines , Drug Repositioning/methods , Esters/pharmacology , Esters/therapeutic use , Guanidines/pharmacology , Guanidines/therapeutic use , Guanine/pharmacology , Guanine/therapeutic use , Humans , Indoles/pharmacology , Indoles/therapeutic use , Lopinavir/pharmacology , Lopinavir/therapeutic use , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , Pyrazines/pharmacology , Pyrazines/therapeutic use , Ribavirin/pharmacology , Ribavirin/therapeutic use , Ritonavir/pharmacology , Ritonavir/therapeutic use , SARS-CoV-2/physiology , Virus Internalization/drug effects , Virus Replication/drug effects
4.
Antiviral Res ; 180: 104857, 2020 08.
Article in English | MEDLINE | ID: covidwho-602131

ABSTRACT

SARS-CoV-2, a member of the coronavirus family, is responsible for the current COVID-19 worldwide pandemic. We previously demonstrated that five nucleotide analogues inhibit the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp), including the active triphosphate forms of Sofosbuvir, Alovudine, Zidovudine, Tenofovir alafenamide and Emtricitabine. We report here the evaluation of a library of nucleoside triphosphate analogues with a variety of structural and chemical features as inhibitors of the RdRps of SARS-CoV and SARS-CoV-2. These features include modifications on the sugar (2' or 3' modifications, carbocyclic, acyclic, or dideoxynucleotides) or on the base. The goal is to identify nucleotide analogues that not only terminate RNA synthesis catalyzed by these coronavirus RdRps, but also have the potential to resist the viruses' exonuclease activity. We examined these nucleotide analogues for their ability to be incorporated by the RdRps in the polymerase reaction and to prevent further incorporation. While all 11 molecules tested displayed incorporation, 6 exhibited immediate termination of the polymerase reaction (triphosphates of Carbovir, Ganciclovir, Stavudine and Entecavir; 3'-OMe-UTP and Biotin-16-dUTP), 2 showed delayed termination (Cidofovir diphosphate and 2'-OMe-UTP), and 3 did not terminate the polymerase reaction (2'-F-dUTP, 2'-NH2-dUTP and Desthiobiotin-16-UTP). The coronaviruses possess an exonuclease that apparently requires a 2'-OH at the 3'-terminus of the growing RNA strand for proofreading. In this study, all nucleoside triphosphate analogues evaluated form Watson-Crick-like base pairs. The nucleotide analogues demonstrating termination either lack a 2'-OH, have a blocked 2'-OH, or show delayed termination. Thus, these nucleotide analogues are of interest for further investigation to evaluate whether they can evade the viral exonuclease activity. Prodrugs of five of these nucleotide analogues (Cidofovir, Abacavir, Valganciclovir/Ganciclovir, Stavudine and Entecavir) are FDA-approved medications for treatment of other viral infections, and their safety profiles are well established. After demonstrating potency in inhibiting viral replication in cell culture, candidate molecules can be rapidly evaluated as potential therapies for COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Infections/virology , Nucleotides/pharmacology , Pneumonia, Viral/virology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Severe Acute Respiratory Syndrome/virology , Severe acute respiratory syndrome-related coronavirus/enzymology , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Betacoronavirus/enzymology , Betacoronavirus/genetics , COVID-19 , Cidofovir/chemistry , Cidofovir/pharmacology , Cidofovir/therapeutic use , Coronavirus Infections/drug therapy , Dideoxynucleosides/chemistry , Dideoxynucleosides/pharmacology , Dideoxynucleosides/therapeutic use , Ganciclovir/chemistry , Ganciclovir/pharmacology , Ganciclovir/therapeutic use , Guanine/analogs & derivatives , Guanine/chemistry , Guanine/pharmacology , Guanine/therapeutic use , Nucleotides/chemistry , Nucleotides/therapeutic use , Pandemics , Pneumonia, Viral/drug therapy , Prodrugs/chemistry , Prodrugs/pharmacology , Prodrugs/therapeutic use , RNA, Viral/antagonists & inhibitors , RNA, Viral/biosynthesis , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2 , Severe Acute Respiratory Syndrome/drug therapy , Stavudine/chemistry , Stavudine/pharmacology , Stavudine/therapeutic use , Valganciclovir/chemistry , Valganciclovir/pharmacology , Valganciclovir/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL